Progressive Education Society's
 Modern College of Art's, Science and Commerce (Autonomous), Shivajinagar, Pune-5
 Department of Mathematics
 Second Year of M.Sc.(Semester IV)(Academic Year 2020-21)

Subject: FOURIER SERIES AND BOUNDARY

Subject Code: 19ScMatP404

Subject Teacher: Prof. Ms. G. A. Shinde.

Chapter 5. Strum-Liouville Problems and Applications.

REGULAR STRUM-LIOUVILLE PROBLEMS:

In previous problems we discussed Strum-Liouville Problems of following types defined on interval $0 \leq x \leq c$

$$
\begin{array}{lll}
X^{\prime \prime}(x)+\lambda X(x)=0, & X^{\prime}(0)=0, & X^{\prime}(c)=0 \\
X^{\prime \prime}(x)+\lambda X(x)=0, & X(0)=0, & X(c)=0, \tag{2}
\end{array}
$$

Now consider linear homogeneous Strum-Liouville Problem
$\left[r(x) X^{\prime}(x)\right]^{\prime}+[q(x)+\lambda p(x)] X(x)=0, \quad(a<x<b)$
with a pair of homogeneous boundary conditions
$a_{1} X(a)+a_{2} X^{\prime}(a)=0, \quad b_{1} X(b)+b_{2} X^{\prime}(b)=0$
where, a_{1} and a_{2} are not both zero; and also b_{1} and b_{2} are not both zero. Here the real valued functions p, q and r in equation (3) are independent of λ.
Strum-Liouville Problem is said to be Regular whenever real valued functions p, q, r and r^{\prime} are continuous on interval $a \leq x \leq b$ and $p(x)>0$ and also $r(x)>0$ when $a \leq x \leq b$.

EXAMPLES:

1. Strum-Liouville Problems in equation (1) and (2) are regular Strum-Liouville Problems.
2.

$$
\begin{array}{cc}
X^{\prime \prime}(x)+\lambda X(x)=0, & (0<x<c) \\
X^{\prime}(0)=0, & h X(c)+X^{\prime}(c)=0
\end{array}
$$

is regular Strum-Liouville Problem.
3.

$$
\begin{array}{lrl}
{\left[x^{2} X^{\prime}(x)\right]^{\prime}+\lambda X(x)} & =0 & (1<x<b) \\
X(1)=0, & X(b) & =0
\end{array} r
$$

is regular Strum-Liouville Problem.
4.

$$
\begin{array}{ll}
{\left[x X^{\prime}(x)\right]^{\prime}+(\lambda / x) X(x)=0} & (1<x<b) \\
X(1)=0, \quad X(b)=0 &
\end{array}
$$

is regular Strum-Liouville Problem.
5.

$$
\begin{aligned}
& {\left[|x| X^{\prime}(x)\right]^{\prime}+(\lambda / x) X(x)=0} \\
& X(1)=0, \quad X(b)=0 \\
& \text { is not regular Strum-Liouville Problem. }
\end{aligned}
$$

A value of λ for which problem (3) - (4) has a non-trivial solution is called an eigenvalue; and the non-trivial solution is called an eigenfunction.
Spectrum: The set of eigenvalues of problem (3) - (4) is called the spectrum of the problem.

SINGULAR STRUM-LIOUVILLE PROBLEMS:

Strum-Liouville Problem in (3) - (4) is called singular Strum-Liouville Problem

1. if at least one of the regularity condition fails. or
2. if function q has infinite discontinuities at an end point of an interval $a \leq x \leq b$. or
3. if $p(x)$ or $r(x)$ vanishes at an end points.

EXAMPLES:

1. $\quad\left[x X^{\prime}(x)\right]^{\prime}+\left(-\frac{n^{2}}{x}+\lambda x\right) X(x)=0 \quad(0<x<c)$
where $n=0,1, \cdots$ with $X(c)=0$ is a singular Strum-Liouville Problem because the functions $p(x)=x$ and $r(x)=x$ vanishes at $x=0$.
2.

$$
\left[\left(1-x^{2}\right) X^{\prime}(x)\right]^{\prime}+\lambda X(x)=0 \quad(-1<x<1)
$$

is a singular Strum-Liouville Problem because the function $r(x)=1-x^{2}$ vanishes at both ends of the interval (-1,1.)

ORTHOGONALITY OF EIGENFUNCTIONS:

A set $\left\{\psi_{n}(x)\right\}$ is orthogonal on an interval $a<x<b$ with respect to a weight function $p(x)$ which is peicewise continuous and positive on that interval if

$$
\int_{a}^{b} p(x) \psi_{m}(x) \psi_{n}(x) d x=0, \text { when } m \neq n
$$

Here above integral represents the inner product $<\psi_{m}(x), \psi_{n}(x)>$ with respect to weight function $P(x)$.

Theorem 1: If λ_{m} and λ_{n} are distinct eigenvalues of the Sturm Liouville problem then corresponding eigenfunctions $X_{m}(x)$ and $X_{n}(x)$ are orthogonal with respect to weight function $p(x)$ on the interval $a<x<b$. the orthogonality also holds in each of the following cases:

1. when $r(a)=0$ and the first of boundary condition (4) is dropped from the problem;
2. when $r(b)=0$ and the second of boundary condition (4) is dropped from the problem;
3. $r(a)=r(b)$ and conditions (4) are replaced by the conditions

$$
X(a)=X(b), \quad X^{\prime}(a)=X^{\prime}(b)
$$

Example 1: Verify the theorem 1 above for the following regular StrumLiouville Problem

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad X(0)=0, \quad X(c)=0
$$

By solving $X^{\prime \prime}(x)+\lambda X(x)=0$, we get $X(x)=c_{1} \cos \sqrt{\lambda} x+c_{2} \sin \sqrt{\lambda} x$. For $\lambda>0$ we get non-trivial eigenvectors $X_{n}(x)=\sin (n \pi x / c)(n=1,2, \cdots)$, and they correspond to the distinct eigenvalues $\lambda_{n}(x)=(n \pi / c)^{2}$.
The functions $X_{n}(x)=\sin (n \pi x / c)$ are orthogonal on interval $0<x<c$ with weight function $p(x)=1$ because;

$$
\int_{0}^{c} \sin \left(\frac{m \pi x}{c}\right) \sin \left(\frac{n \pi x}{c}\right) d x=0
$$

Corollary 1: If λ is an eigenvalue of Strum-Liouville Problem (3)-(4), then it must be real number; and the same is true in cases 1. 2. 3. treated in Theorem 1.

Uniquness of Eigenfunction:

Corollary 2: If λ is an eigenvalue of a Strum-Liouville Problem (3)-(4), and if conditions $q(x) \leq 0(a \leq x \leq b)$ and $a_{1} a_{2} \leq 0, b_{1} b_{2} \geq 0$ are satisfied, then $\lambda \geq 0$.

METHOD OF SOLUTION:

Example 1: Let us solve the regular Strum-Liouville Problem

$$
\begin{equation*}
X^{\prime \prime}(x)+\lambda X(x)=0, \quad(0<x<c) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
X^{\prime}(0)=0, \quad h X(c)+X^{\prime}(c)=0 \tag{6}
\end{equation*}
$$

where h is positive constant.
From Corollary 2. there are no negative eigenvalues. If the general solution of equation (5) is $X(x)=A x+B$, where A and B are constants; and it follows from boundary conditions (6) that $A=0$ and $B=0$. This gives problem has only the possibity that $\lambda>0$.
If $\lambda>0$, we consider $\lambda=\alpha^{2},(\alpha>0)$; hence general solution of equation (5) is $X(x)=c_{1} \cos \alpha x+c_{2} \sin \alpha x$. From first boundary condition in (6), we get

$$
C_{1}(h \cos \alpha c-\alpha \sin \alpha c)=0
$$

Now, from second boundary condition in (6), we get

$$
\begin{equation*}
\tan (\alpha c)=\frac{h}{\alpha} \tag{7}
\end{equation*}
$$

Hence by solving (7) we get $\lambda_{n}=\alpha_{n}^{2}$, where $\tan \left(\alpha_{n} c\right)=\frac{h}{\alpha_{c}} . \quad\left(\alpha_{n}>0\right)$. so corresponding eigenfunctions are

$$
X_{n}(x)=\cos \alpha_{n} x .(n=1,2, \cdots)
$$

So, according to Theorem 1. $X_{n}(x)$ are orthogonal on the interval $0<x<c$ with weight function $p(x)=1$.
Hence,

$$
\left\|X_{n}\right\|^{2}=\frac{1}{2}\left(c+\frac{\sin 2 \alpha_{n} c}{2 \alpha_{n}}\right)
$$

Then by using $\sin \left(2 \alpha_{n} c\right)=2 \sin \left(\alpha_{n} c\right) \cos \left(\alpha_{n} c\right)$ and $\alpha_{n}=\frac{h}{\tan \left(\alpha_{n} c\right)}$ we get;

$$
\left\|X_{n}\right\|^{2}=\frac{h c+\sin ^{2} \alpha_{n} c}{2 h}
$$

Hence normalized eigenfunctions are,

$$
\phi_{n}(x)=\sqrt{\frac{2 h}{h c+\sin ^{2} \alpha_{n} c}} \cos \left(\alpha_{n} x\right) \quad(n=1,2, \cdots)
$$

Example 2: Solve the regular Strum-Liouville Problem

$$
X^{\prime \prime}(x)+\lambda X(x)=0, \quad X(0)=0, \quad X^{\prime}(1)=0
$$

Example 3: Let us solve the regular Strum-Liouville Problem

$$
\begin{gather*}
{\left[x X^{\prime}(x)\right]^{\prime}+\frac{\lambda}{x} X(x)=0, \quad(1<x<b)} \tag{8}\\
X^{\prime}(1)=0, \quad h X(b)+X^{\prime}(b)=0, \tag{9}
\end{gather*}
$$

where h is positive constant.

Equation (8) can be written as

$$
\begin{equation*}
x^{2} \frac{d^{2} X}{d x^{2}}+x \frac{d X}{d x}+\lambda X(x)=0 \tag{10}
\end{equation*}
$$

By using Chain rule of differentiation and considering substitution $x=e^{s}$; we get

$$
\frac{d X}{d x}=e^{-s} \frac{d X}{d s} \quad \text { and } \quad \frac{d^{2} X}{d s^{2}}=e^{2 s} \frac{d^{2} X}{d x^{2}}+e^{s} \frac{d X}{d x}
$$

Substitute these value in equation (10),

$$
\begin{equation*}
\frac{d^{2} X}{d s^{2}}+\lambda X=0, \quad(0<s<\log (b)) \tag{11}
\end{equation*}
$$

By using first boundary condition at $s=0$ we obtain

$$
\begin{equation*}
\frac{d X}{d s}=0 \tag{a}
\end{equation*}
$$

also at $s=\log b$ we get

$$
h X+\frac{1}{b} \frac{d X}{d s}=0
$$

[12(b)]
Hence equation (11) with [12(a)] and [12(b)] is reduced Strum-Liouville Problem. Hence by From Corollary 2. there are no negative eigenvalues. If the general solution of equation (11) is

$$
X(s)=A s+B
$$

where A and B are constants; and it follows from boundary conditions [12(a)] that $A=0$ and $B=0$. This gives problem has only the possibity that $\lambda>0$. If $\lambda>0$, we consider $\lambda=\alpha^{2},(\alpha>0)$; hence general solution of equation (11) is

$$
X(s)=c_{1} \cos \alpha s+c_{2} \sin \alpha s
$$

From boundary condition in [12(a)], we get $c_{2}=0$ and then solving for [12(b)] we get

$$
h b=\alpha \tan (\alpha s) .
$$

Hence, $\lambda_{n}=\alpha_{n}^{2}, h b=\alpha_{n} \tan \left(\alpha_{n} \log b\right)$ and corresponding eigenfunctions are $X_{n}(s)=\cos \left(\alpha_{n} \log x\right)$. So,

$$
\left\|X_{n}\right\|=\sqrt{\frac{h b \log b+\sin ^{2}\left(\alpha_{n} \log b\right)}{2 h b}}
$$

Hence normalized eigenfunctions of problem (8) and (9) is

$$
\phi_{n}(x)=\sqrt{\frac{2 h b}{h b \log b+\sin ^{2}\left(\alpha_{n} \log b\right)}} \cos \left(\alpha_{n} \log x\right) . \quad(n=1,2, \cdots)
$$

SURFACE HEAT TRANSFER:

Let $u(x, t)$ denotes temperature in a slab $0 \leq x \leq 1$, initially slab has temperature $f(x)$ at face $x=0$.
The boundary value problem is

Figure 1:

$$
\begin{align*}
& u_{t}(x, t)=k u_{x x}(x, t) \quad(0<x<1, t>0) \tag{13}\\
& u_{x}(0, t)=0, \quad u_{x}(1, t)=-h u(1, t), \quad u(x, 0)=f(x) \tag{14}
\end{align*}
$$

where h is positive constant.
Consider $u(x, t)=X(x) T(t)$ is any non-trivial soluion of given problem, take its derivatives with respect to t, x and substitute in equation (13), we get system of two boundary value problems;

$$
\begin{align*}
& X^{\prime \prime}(x)+\lambda X(x)=0, \quad X^{\prime}(0)=0, \quad h X(1)+X^{\prime}(1)=0 . \tag{15}\\
& T^{\prime}(t)+\lambda k T(t)=0 \tag{16}
\end{align*}
$$

For boundary value problem in equation (15) has non-trivial solution $X_{n}(x)=$ $\cos \alpha_{n} x$ for negative λ_{n} only where $\tan \alpha_{n}=h / \alpha_{n},\left(\alpha_{n}>0\right)$.
Norm of given eigenfunction is

$$
\left\|X_{n}\right\|^{2}=\frac{h+\sin ^{2} \alpha_{n}}{2 h}
$$

Hence the normalized eigenfunctions are

$$
\phi_{n}(x)=\sqrt{\frac{2 h}{h+\sin ^{2} \alpha_{n}}} \cos \alpha_{n} x \quad(n=1,2,3, \cdots)
$$

By solving equation (16) we get,

$$
T_{n}(t)=e^{-k \alpha_{n}^{2} t}
$$

Hence formal solution of given temperature problem is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} e^{-\alpha_{n}^{2} k t} \phi_{n}(x)
$$

So, $u(x, 0)=f(x)=\sum_{n=1}^{\infty} c_{n} \phi_{n}(x)$, and c_{n} can be evaluated by Fourier cosine coefficient formula for $f(x)$,

$$
c_{n}=\int_{0}^{1} f(x) \phi_{n}(x) d x=\sqrt{\frac{2 h}{h+\sin ^{2} \alpha_{n}}} \int_{0}^{1} f(x) \cos \alpha_{n} x d x .
$$

Therefore,

$$
u(x, t)=\sum_{n=1}^{\infty} \frac{2 h}{h+\sin ^{2} \alpha_{n}}\left(e^{-\alpha_{n}^{2} k t}\right) \cos \alpha_{n} x \int_{0}^{1} f(x) \cos \left(\alpha_{n} x\right) d x .
$$

BOUNDARY VALUE PROBLEMS:

Example 1: let $\mathrm{u}(\mathrm{x}, \mathrm{y})$ denote the bounded steady-state temperature in a semiinfinite slab bounded by the planes $x=0$ and $x=\phi$, and $y=0$ with the face $x=0$ is insulated and face $x=\phi$ kept at zero temperature, and the flux is inwards toward the face in the plane $y=0$ is prescribed function $f(x)$.

Figure 2:

Hence boundary value problem is

$$
\begin{array}{ll}
u_{x x}(x, y)+u_{y y}(x, y)=0 & (0<x<\pi, y>0), \\
u_{x}(0, y)=0, \quad u(\pi, y)=0 & (y>0), \\
-K u_{y}(x, 0)=f(x) & (0<x<\pi),
\end{array}
$$

where K is a positive constant.
Let, $u(x, y)=X(x) Y(y)$ be non-trivial solution of given booundary value problem take its derivatives with respect to y, x and substitute in equation (17), we get system of two boundary value problems;

$$
\begin{align*}
& X^{\prime \prime}(x)+\lambda X(x)=0, \quad X^{\prime}(0)=0, \quad X(\pi)=0 \tag{20}\\
& Y^{\prime \prime}(y)-\lambda Y(y)=0 \tag{21}
\end{align*}
$$

By solving boundary value problem in equation (20), we get its nontrivial solution for $\lambda<0$ as
$\lambda_{n}=\alpha_{n}^{2}, \quad X_{n}(x)=\cos \left(\alpha_{n} x\right), \quad(n=1,2, \cdots)$
where

$$
\alpha_{n}=\frac{2 n-1}{2} \quad \text { and } \quad\left\|X_{n}\right\|=\sqrt{\frac{\pi}{2}}
$$

Hence normalized eigenfunctions of given problem is

$$
\phi_{n}(x)=\sqrt{\frac{2}{\pi}} \cos \left(\alpha_{n} x\right)
$$

The corresponding boounded solution of equation (21) are constant multiple of the functions

$$
Y_{n}(x)=\exp \left(-\alpha_{n} y\right)
$$

Consequently,

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n} \exp \left(-\alpha_{n} y\right) \phi_{n}(x) .
$$

Now applying non-homogeneous condition (19) to this expression,

$$
f(x)=\sum_{n=1}^{\infty}\left(K c_{n} \alpha_{n}\right) \phi_{n}(x) .
$$

Where, $\left(K c_{n} \alpha_{n}\right)=<f, \phi_{n}>$.
Example 2: Solve the boundary value problem
$u_{x x}(x, y)+u_{y y}(x, y)=0$
$(0<x<a, 0<y<b)$,
$u_{x}(0, y)=0, \quad u_{x}(a, y)=-h u(a, y)$
$(0<y<b)$,
$(0<x<a)$,
where h is a positive constant.
Example 3: Consider Dirichlet problem for function $u(\rho, \phi)$, in polar coordinates which satisfies Laplace's equation $\rho^{2} u_{\rho \rho}(\rho, \phi)+\rho u_{\rho}(\rho, \phi)+u_{\phi \phi}(\rho, \phi)=0, \quad(1<\rho<b, 0<\phi<\pi)$ and boundary conditions are
$u(\rho, 0)=0, \quad u(\rho, \pi)=u_{0} \quad(1<\rho<b) \quad(23)$, $u(1, \phi)=0, \quad u(b, \phi)=0 \quad(0<\phi<\pi) \quad(24)$, where u_{0} is a constant.

Figure 3:
Let $u=R(\rho) \Phi(\phi)$ be non-trivial solution of given problem, take its suitable derivatives and substitute in equations (22) - (24) so that we get reduced boundary value problems

$$
\begin{align*}
& {\left[\rho R^{\prime}(\rho)\right]^{\prime}+\frac{\lambda}{\rho} R(\rho)=0, \quad R(1)=0, \quad R(b)=0} \tag{25}\\
& \Phi^{\prime \prime}(\phi)-\lambda \Phi(\phi)=0, \quad \Phi(0)=0 \tag{26}
\end{align*}
$$

To solve Strum-Liouville problem in equation (25) substitute $\rho=e^{s}$, then by applying chain rule we get reduced boundary value problem for problem in equation (25) as,

$$
\begin{align*}
& \frac{d^{2} R}{d s^{2}}+\lambda R=0, \quad 0<s<\log b \tag{27}\\
& R(a)=0 \quad \text { and } \quad R(\log b)=0 \tag{28}
\end{align*}
$$

this system in (27)-(28) will give non-trivial solution for $\lambda>0$ which is

$$
\lambda_{n}=\alpha_{n}^{2} \text { where } \alpha_{n}=\frac{n \pi}{\log b}
$$

with corresponding eigen-functions

$$
R_{n}(\rho)=\sin \left(\alpha_{n} \log \rho\right)
$$

So normalized eigenfunctions are

$$
\phi_{n}(\rho)=\sqrt{\frac{2}{\log b}} \sin \left(\alpha_{n} \log \rho\right)
$$

Now solving (26) we get $\phi_{n}(\phi)=\sinh \left(\alpha_{n} \phi\right)$
Hence,

$$
\begin{equation*}
u(\rho, \phi)=\sum_{n=1}^{\infty} c_{n} \sinh \left(\alpha_{n} \phi\right) \phi_{n}(\rho) . \tag{29}
\end{equation*}
$$

For non-homogeneous condition put $\phi=\pi$ in equation (29) so that we obtain

$$
u(\rho, \pi)=u_{0}=\sum_{n=1}^{\infty}\left[c_{n} \sinh \left(\alpha_{n} \pi\right)\right] \sqrt{\frac{2}{\log b}} \sin \left(\alpha_{n} \log \rho\right) \quad(1<\rho<b)
$$

then $c_{n} \sinh \left(\alpha_{n} \pi\right)$ is fourier sine coefficient of $\sinh \left(\alpha_{n} \pi\right)$ Hence,

$$
c_{n} \sinh \left(\alpha_{n} \pi\right)=u_{0} \sqrt{\frac{2}{\log b}} \int_{1}^{b} \frac{1}{\rho} \sin \left(\alpha_{n} \log \rho\right) d \rho
$$

after thesesubstitution in (29) we get

$$
u(\rho, \phi)=\frac{4 u_{0}}{\pi} \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n} \frac{\sinh \left(\alpha_{n} \phi\right)}{\sinh \left(\alpha_{n} \pi\right)} \sinh \left(\alpha_{n} \log \rho\right) .
$$

